Similarity Indexing: Algorithms and Performance
نویسندگان
چکیده
Efficient indexing support is essential to allow content-based image and video databases using similaritybased retrieval to scale to large databases (tens of thousands up to millions of images). In this paper, we take an in depth look at this problem. One of the major difficulties in solving this problem is the high dimension (6-100) of the feature vectors that are used to represent objects. We provide an overview of the work in computational geometry on this problem and highlight the results we found are most useful in practice, including the use of approximate nearest neighbor algorithms. We also present a variant of the optimized k-d tree we call the VAM k-d tree, and provide algorithms to create an optimized R-tree we call the VAMSplit R-tree. We found that the VAMSplit R-tree provided better overall performance than all competing structures we tested for main memory and secondary memory applications. We observed large improvements in performance relative to the R*-tree and SS-tree in secondary memory applications, and modest improvements relative to optimized k-d tree variants.
منابع مشابه
Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملMeasuring the Difficulty of Distance-Based Indexing
Data structures for similarity search are commonly evaluated on data in vector spaces, but distance-based data structures are also applicable to non-vector spaces with no natural concept of dimensionality. The intrinsic dimensionality statistic of Chávez and Navarro provides a way to compare the performance of similarity indexing and search algorithms across different spaces, and predict the pe...
متن کاملOn Approximately Searching for Similar Word Embeddings
We discuss an approximate similarity search for word embeddings, which is an operation to approximately find embeddings close to a given vector. We compared several metric-based search algorithms with hash-, tree-, and graphbased indexing from different aspects. Our experimental results showed that a graph-based indexing exhibits robust performance and additionally provided useful information, ...
متن کاملRobustness of Case-Initialized Genetic Algorithms
We investigate the robustness of Case Initialized Genetic AlgoRithm (CIGAR) systems with respect problem indexing. When confronted with a series of similar problems CIGAR stores potential solutions in a case-base or an associative memory and retrieves and uses these solutions to help improve a genetic algorithm’s performance over time. Defining similarity among the problems, or indexing, is key...
متن کاملThe Sweet Spot between Inverted Indices and Metric-Space Indexing for Top-K-List Similarity Search
We consider the problem of processing similarity queries over a set of top-k rankings where the query ranking and the similarity threshold are provided at query time. Spearman’s Footrule distance is used to compute the similarity between rankings, considering how well rankings agree on the positions (ranks) of ranked items (i.e., the L1 distance). This setup allows the application of metric ind...
متن کاملHybrid Document Indexing with Spectral Embedding
Document representation has a large impact on the performance of document retrieval and clustering algorithms. We propose a hybrid document indexing scheme that combines the traditional bagof-words representation with spectral embedding. This method accounts for the specifics of the document collection and also uses semantic similarity information based on a large scale statistical analysis. Cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996